Select Git revision
LBAdaptiveSOM.cpp
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
LBAdaptiveSOM.cpp 2.18 KiB
#include "LBAdaptiveSOM.h"
#if CV_MAJOR_VERSION >= 2 && CV_MAJOR_VERSION <= 3
using namespace bgslibrary::algorithms;
LBAdaptiveSOM::LBAdaptiveSOM() :
IBGS(quote(LBAdaptiveSOM)),
sensitivity(75), trainingSensitivity(245),
learningRate(62), trainingLearningRate(255),
trainingSteps(55)
{
debug_construction(LBAdaptiveSOM);
initLoadSaveConfig(algorithmName);
}
LBAdaptiveSOM::~LBAdaptiveSOM() {
debug_destruction(LBAdaptiveSOM);
delete m_pBGModel;
}
void LBAdaptiveSOM::process(const cv::Mat &img_input, cv::Mat &img_output, cv::Mat &img_bgmodel)
{
init(img_input, img_output, img_bgmodel);
IplImage _frame = cvIplImage(img_input);
IplImage* frame = cvCloneImage(&_frame);
if (firstTime) {
int w = img_input.size().width;
int h = img_input.size().height;
m_pBGModel = new lb::BGModelSom(w, h);
m_pBGModel->InitModel(frame);
}
m_pBGModel->setBGModelParameter(0, sensitivity);
m_pBGModel->setBGModelParameter(1, trainingSensitivity);
m_pBGModel->setBGModelParameter(2, learningRate);
m_pBGModel->setBGModelParameter(3, trainingLearningRate);
m_pBGModel->setBGModelParameter(5, trainingSteps);
m_pBGModel->UpdateModel(frame);
img_foreground = cv::cvarrToMat(m_pBGModel->GetFG());
img_background = cv::cvarrToMat(m_pBGModel->GetBG());
#ifndef MEX_COMPILE_FLAG
if (showOutput) {
cv::imshow(algorithmName + "_FG", img_foreground);
cv::imshow(algorithmName + "_BG", img_background);
}
#endif
img_foreground.copyTo(img_output);
img_background.copyTo(img_bgmodel);
cvReleaseImage(&frame);
firstTime = false;
}
void LBAdaptiveSOM::save_config(cv::FileStorage &fs) {
fs << "sensitivity" << sensitivity;
fs << "trainingSensitivity" << trainingSensitivity;
fs << "learningRate" << learningRate;
fs << "trainingLearningRate" << trainingLearningRate;
fs << "trainingSteps" << trainingSteps;
fs << "showOutput" << showOutput;
}
void LBAdaptiveSOM::load_config(cv::FileStorage &fs) {
fs["sensitivity"] >> sensitivity;
fs["trainingSensitivity"] >> trainingSensitivity;
fs["learningRate"] >> learningRate;
fs["trainingLearningRate"] >> trainingLearningRate;
fs["trainingSteps"] >> trainingSteps;
fs["showOutput"] >> showOutput;
}
#endif