BGSLibrary
A Background Subtraction Library
Last Page Update: 18/03/2017
Latest Library Version: 2.0.0 (see Release Notes for more info)
The BGSLibrary was developed by Andrews Sobral and provides an easy-to-use C++ framework based on OpenCV to perform foreground-background separation in videos. The bgslibrary is compatible with OpenCV 2.x and 3.x, and compiles under Windows, Linux, and Mac OS X. Currently the library contains 40 algorithms. The source code is available under GNU GPLv3 license, the library is free and open source for academic purposes.
Note: The opencv3 branch will be deprecated.
-
Installation instructions
-
Graphical User Interface:
Citation
If you use this library for your publications, please cite it as:
@inproceedings{bgslibrary,
author = {Sobral, Andrews},
title = {{BGSLibrary}: An OpenCV C++ Background Subtraction Library},
booktitle = {IX Workshop de Visão Computacional (WVC'2013)},
address = {Rio de Janeiro, Brazil},
year = {2013},
month = {Jun},
url = {https://github.com/andrewssobral/bgslibrary}
}
A chapter about the BGSLibrary has been published in the handbook on Background Modeling and Foreground Detection for Video Surveillance.
@incollection{bgslibrarychapter,
author = {Sobral, Andrews and Bouwmans, Thierry},
title = {BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation},
booktitle = {Background Modeling and Foreground Detection for Video Surveillance},
publisher = {CRC Press, Taylor and Francis Group.}
year = {2014},
}
Download PDF:
-
Sobral, Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library. IX Workshop de Visão Computacional (WVC'2013), Rio de Janeiro, Brazil, Jun. 2013. (PDF in brazilian-portuguese containing an english abstract).
-
Sobral, Andrews; Bouwmans, Thierry. "BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation". Chapter on the handbook "Background Modeling and Foreground Detection for Video Surveillance", CRC Press, Taylor and Francis Group, 2014. (PDF in english).
Some references
Some algorithms of the BGSLibrary were used successfully in the following papers:
-
(2014) Sobral, Andrews; Vacavant, Antoine. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding (CVIU), 2014. (Online) (PDF)
-
(2013) Sobral, Andrews; Oliveira, Luciano; Schnitman, Leizer; Souza, Felippe. (Best Paper Award) Highway Traffic Congestion Classification Using Holistic Properties. In International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA'2013), Innsbruck, Austria, Feb 2013. (Online) (PDF)