-
Francesco Sabatini authoredFrancesco Sabatini authored
title: 'Project #31 - Data Extraction'
output:
html_document: default
toc: TRUE
always_allow_html: yes
Timestamp: r date()
Drafted: Francesco Maria Sabatini
Version: 1.0
This report documents the data extraction for sPlot project proposal #31 - The adaptive value of xylem physiology within and across global ecoregions as requested by Daniel Laughlin and Jesse Robert Fleri
library(tidyverse)
library(knitr)
library(kableExtra)
library(viridis)
library(grid)
library(gridExtra)
#library(vegan)
#library(xlsx)
#library(caret)
#library(foreign)
#library(raster)
library(downloader)
library(sp)
library(sf)
library(rgdal)
library(rgeos)
#save temporary files
write("TMPDIR = /data/sPlot/users/Francesco/_tmp", file=file.path(Sys.getenv('TMPDIR'), '.Renviron'))
write("R_USER = /data/sPlot/users/Francesco/_tmp", file=file.path(Sys.getenv('R_USER'), '.Renviron'))
#rasterOptions(tmpdir="/data/sPlot/users/Francesco/_tmp")
Import data from sPlot 3.0
#Import sPlot data
load("/data/sPlot/releases/sPlot3.0/header_sPlot3.0.RData")
load("/data/sPlot/releases/sPlot3.0/DT_sPlot3.0.RData")
load("/data/sPlot/releases/sPlot3.0/Traits_CWMs_sPlot3.RData")
load("/data/sPlot/releases/sPlot3.0/SoilClim_sPlot3.RData")
Import data on xylem traits, provided by Jesse Robert Fleri on October 26th, 2020.
load("xylem_data.RData")
1 Extract plots from sPlot based on species with xylem traits
Extract all plots containing at least one species in the xylem list.
species_list <- xylem_data$Species
plot.sel <- DT2 %>%
filter(DT2$species %in% species_list) %>%
dplyr::select(PlotObservationID) %>%
distinct() %>%
pull(PlotObservationID)
#exclude plots without geographic information
header.xylem <- header %>%
filter(PlotObservationID %in% plot.sel) %>%
filter(!is.na(Latitude))
#refine plot.sel
plot.sel <- header.xylem$PlotObservationID
DT.xylem <- DT2 %>%
filter(taxon_group %in% c("Vascular plant", "Unknown")) %>%
filter(PlotObservationID %in% plot.sel)
Out of the r length(species_list)
species in the sRoot list, r sum(unique(DT2$species) %in% species_list)
species are present in sPlot, for a total of r nrow(DT.xylem %>% filter(species %in% species_list))
records, across r length(plot.sel)
plots.
2 Extract woody species
This is partial selection, as we don't have information on the growth form of all species in sPlot
#load list of woody species, as provided to me by Alexander Zizka, within sPlot project #21
load("../Project_21/_input/evowood_species_list.rda")
#Select all woody species and extract relevant traits from TRY
woody_species_traits <- sPlot.traits %>%
dplyr::select(species, GrowthForm, is.tree.or.tall.shrub, n,
starts_with("StemDens"),
starts_with("Stem.cond.dens"),
starts_with("StemConduitDiameter"),
starts_with("LDCM"),
starts_with("SLA"),
starts_with("PlantHeight"),
starts_with("Wood"),
starts_with("SpecificRootLength_mean")) %>%
filter( (species %in% species_list) |
(species %in% synonyms$name_binomial) |
grepl(pattern = "tree|shrub", x = GrowthForm) |
is.tree.or.tall.shrub==T
) %>%
#counter proof - exclude species NOT herb
filter(GrowthForm != "herb" | is.na(GrowthForm))
table(woody_species_traits$GrowthForm, exclude=NULL)
# MEMO: some standardization needed in sPlot 3.0
#
# Using data from A.Zizka whhen selecting species
# improves the selection only marginally (from ~21k to ~22k)
knitr::kable(woody_species_traits %>%
sample_n(20), caption="Example of gap-filled trait data from TRY (20 randomly selected species)") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
Selected traits are:
- StemDens - 4 - Stem specific density (SSD) or wood density (stem dry mass per stem fresh volume) (g/cm^3)
- SLA - 11 - Leaf area per leaf dry mass (specific leaf area, SLA or 1/LMA)
- PlantHeight - 18 - Plant height (vegetative + generative)
- StemDiam - 21 - Stem diameter (m)
- Stem.cond.dens - 169 - Stem conduit density (vessels and tracheids) (mm^-2)
- StemConduitDiameter - 281 - Stem conduit diameter (vessels, tracheids)_micro (m)
- Wood.vessel.length - 282 - Wood vessel element length; stem conduit (vessel and tracheids) element length_micro (m)
- WoodFiberLength - 289 - Wood fiber lengths_micro (m)
- SpecificRootLength - 1080 - Root length per root dry mass (specific root length, SRL) (cm/g)
Codes correspond to those reported in TRY
#subset DT.xylem to only retain woody species
DT.xylem <- DT.xylem %>%
filter(species %in% (woody_species_traits$species))
nrow(DT.xylem)
Merge relative cover across vegetation layers, if needed, and normalize to 1 (=100%)
###combine cover values across layers
combine.cover <- function(x){
while (length(x)>1){
x[2] <- x[1]+(100-x[1])*x[2]/100
x <- x[-1]
}
return(x)
}
DT.xylem <- DT.xylem %>%
dplyr::select(PlotObservationID, species,Layer, Relative.cover) %>%
# normalize relative cover to 100
left_join({.} %>%
group_by(PlotObservationID, Layer) %>%
summarize(Tot.Cover=sum(Relative.cover), .groups="drop"),
by=c("PlotObservationID", "Layer")) %>%
mutate(Relative.cover=Relative.cover/Tot.Cover) %>%
group_by(PlotObservationID, species) %>%
summarize(Relative.cover=combine.cover(Relative.cover), .groups="drop") %>%
ungroup()
nrow(DT.xylem)
3 Calculate CWMs and trait coverage
Calculate CWM and trait coverage for each trait and each plot. Select plots having more than 80% coverage for at least one trait.
# Merge species data table with traits
CWM.xylem0 <- DT.xylem %>%
as_tibble() %>%
dplyr::select(PlotObservationID, species, Relative.cover) %>%
left_join(xylem_data %>%
dplyr::rename(species=Species) %>%
dplyr::select(species, P50, Ks),
by="species")
# Calculate CWM for each trait in each plot
CWM.xylem1 <- CWM.xylem0 %>%
group_by(PlotObservationID) %>%
summarize_at(.vars= vars(P50:Ks),
.funs = list(~weighted.mean(., Relative.cover, na.rm=T)),
.groups="drop") %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.value")
# Calculate coverage for each trait in each plot
CWM.xylem2 <- CWM.xylem0 %>%
mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative.cover),
.vars = vars(P50:Ks)) %>%
group_by(PlotObservationID) %>%
summarize_at(.vars= vars(P50:Ks),
.funs = list(~sum(., na.rm=T)),
.groups="drop") %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.coverage")
# Calculate CWV
variance2.fun <- function(trait, abu){
res <- as.double(NA)
#nam <- nam[!is.na(trait)]
abu <- abu[!is.na(trait)]
trait <- trait[!is.na(trait)]
abu <- abu/sum(abu)
if (length(trait)>1){
# you need more than 1 observation to calculate
# skewness and kurtosis
# for calculation see
# http://r.789695.n4.nabble.com/Weighted-skewness-and-curtosis-td4709956.html
m.trait <- weighted.mean(trait,abu)
res <- sum(abu*(trait-m.trait)^2)
}
res
}
CWM.xylem3 <- CWM.xylem0 %>%
group_by(PlotObservationID) %>%
summarize_at(.vars= vars(P50:Ks),
.funs = list(~variance2.fun(., Relative.cover))) %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.variance")
## Calculate proportion of species having traits
CWM.xylem4 <- CWM.xylem0 %>%
group_by(PlotObservationID) %>%
summarize_at(.vars= vars(P50:Ks),
.funs = list(~sum(!is.na(.)))) %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.nspecies")
# Join together
CWM.xylem <- CWM.xylem1 %>%
left_join(CWM.xylem2, by=c("PlotObservationID", "trait")) %>%
left_join(CWM.xylem3, by=c("PlotObservationID", "trait")) %>%
left_join(CWM.xylem4, by=c("PlotObservationID", "trait")) %>%
left_join(CWM.xylem0 %>%
group_by(PlotObservationID) %>%
summarize(sp.richness=n()), by=c("PlotObservationID"),
.groups="drop") %>%
mutate(trait.coverage.nspecies=trait.nspecies/sp.richness) %>%
#filter(trait.coverage>=0.8) %>%
arrange(PlotObservationID)
knitr::kable(CWM.xylem[1:20,], caption="Example of CWM data file") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
CWM.xylem08 <- CWM.xylem %>%
filter(trait.coverage>=0.8)
knitr::kable(CWM.xylem08 %>%
group_by(trait) %>%
summarize("num.plots"=n(),.group="drop"), caption="Number of plots with >=.8 coverage per trait") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
#Create list of plots having at least one trait with >=.8 coverage and extract header data
#plot80perc <- (CWM.xylem %>%
# dplyr::select(PlotObservationID) %>%
# distinct())$PlotObservationID
#DT.xylem08 <- DT.xylem %>%
# filter(PlotObservationID %in% header.xylem$PlotID)
#CWM.xylem <- CWM.xylem %>%
# filter(PlotObservationID %in% header.xylem$PlotID)
Completeness of header data
knitr::kable(data.frame(Completeness_perc=colSums(!is.na(header.xylem))/
nrow(header.xylem)*100)[-c(1,2),,drop=F],
caption="Header file - Columns present and % completeness") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
The process results in r nrow(header.xylem)
plots selected, for a total of r nrow(CWM.xylem)
trait * plot combinations.
Geographical distribution of plots
countries <- map_data("world")
ggworld <- ggplot(countries, aes(x=long, y=lat, group = group)) +
geom_polygon(col=NA, lwd=3, fill = gray(0.9)) +
geom_point(data=header.xylem, aes(x=Longitude, y=Latitude, group=1), col="red", alpha=0.5, cex=0.7, shape="+") +
theme_bw()
ggworld
Summarize data across data sets in sPlot, and create list of data custodians
db.out <- read_csv("/data/sPlot/users/Francesco/_sPlot_Management/Consortium/Databases.out.csv") %>%
dplyr::select(`GIVD ID`, Custodian)
data.origin <- header.xylem %>%
group_by(`GIVD ID`) %>%
summarize(Num.plot=n(), .groups="drop") %>%
left_join(db.out)
knitr::kable(data.origin, caption="Data Origin") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
The data derive from r nrow(data.origin)
datasets.
4 Extract climate and soils data
soilclim.xylem <- soilclim %>%
filter(PlotObservationID %in% plot.sel) %>%
rename(Elevation=Elevation_median, -Elevation_q2.5, -Elevation_q97.5)
knitr::kable(soilclim.xylem %>%
sample_n(20), caption="Example of climatic and soil variables for 20 randomly selected plots. All values represent the mean in a circle centered on the plot coordinates, having a radius equal to the plot's location uncertainty (capped to 50 km for computing reasons). Sd is also reported.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "center")
The procedure used to obtain these environmental predictors is described here (Click to download the report)
Bioclimatic variables (bio01-bio19) derive from CHELSA
Codes:
Bio1 = Annual Mean Temperature
Bio2 = Mean Diurnal Range
Bio3 = Isothermality
Bio4 = Temperature Seasonality
Bio5 = Max Temperature of Warmest Month
Bio6 = Min Temperature of Coldest Month
Bio7 = Temperature Annual Range
Bio8 = Mean Temperature of Wettest Quarter
Bio9 = Mean Temperature of Driest Quarter
Bio10 = Mean Temperature of Warmest Quarter
Bio11 = Mean Temperature of Coldest Quarter
Bio12 = Annual Precipitation
Bio13 = Precipitation of Wettest Month
Bio14 = Precipitation of Driest Month
Bio15 = Precipitation Seasonality
Bio16 = Precipitation of Wettest Quarter
Bio17 = Precipitation of Driest Quarter
Bio18 = Precipitation of Warmest Quarter
Bio19 = Precipitation of Coldest Quarter
\newline \newline
Soil variables (5 cm depth) derive from the ISRIC dataset, downloaded at 250-m resolution
CECSOL Cation Exchange capacity of soil
CLYPPT Clay mass fraction in %
CRFVOL Coarse fragments volumetric in %
ORCDRC Soil Organic Carbon Content in g/kg
PHIHOX Soil pH x 10 in H20
SLTPPT Silt mass fraction in %
SNDPPT Sand mass fraction in %
BLDFIE Bulk Density (fine earth) in kg/m3
P.ret.cat Phosphorous Retention - Categorical value, see ISRIC 2011-06
\newline \newline
5 Export & SessionInfo
save( woody_species_traits, DT.xylem, CWM.xylem, header.xylem,
file="_derived/Xylem_sPlot.RData" )
sessionInfo()