Skip to content
Snippets Groups Projects
Commit a4cbc561 authored by nc71qaxa's avatar nc71qaxa
Browse files

Split Samples new

parent 3f8dbcf9
No related branches found
No related tags found
No related merge requests found
#### Apollo standard script #####
library(apollo) # Load apollo package
# Test treatment effect
database <- database_full %>%
filter(!is.na(Treatment_new)) %>%
mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0),
Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0),
Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0),
Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0),
Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0)) %>%
filter(Treatment_A == "Not_Treated")
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp Not_Treated A NR",
modelDescr = "MXL wtp space Not_Treated A NR",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/Split_samples"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
mu_nat_NR = 0,
mu_walking_NR = 0,
mu_asc_NR = 0,
ASC_sq = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 0)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR -
Rent_1)
V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR -
Rent_2)
V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 +
mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR -
Rent_3 + mu_asc_NR * Z_Mean_NR)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_not_tr_a_nr = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_not_tr_a_nr)
#### Apollo standard script #####
library(apollo) # Load apollo package
# Test treatment effect
database <- database_full %>%
filter(!is.na(Treatment_new)) %>%
mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0),
Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0),
Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0),
Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0),
Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0)) %>%
filter(Treatment_A == "Treated")
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp Treated A NR",
modelDescr = "MXL wtp space Treated A NR",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/Split_samples"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_nat_NR = 0,
mu_walking_NR = 0,
mu_asc_NR = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR -
Rent_1)
V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR -
Rent_2)
V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 +
mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR -
Rent_3 + mu_asc_NR * Z_Mean_NR)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_tr_a_nr = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_tr_a_nr)
#### Apollo standard script #####
library(apollo) # Load apollo package
# Test treatment effect
database <- database_full %>%
filter(Treatment_D == "Vol. Treated")
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp Vol_Treat",
modelDescr = "MXL wtp space Vol_Treat",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/Split_samples"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 0)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 -
Rent_1)
V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 -
Rent_2)
V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 -
Rent_3)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_Vol_Treat = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_Vol_Treat)
#### Apollo standard script #####
library(apollo) # Load apollo package
# Test treatment effect
database <- database_full %>%
filter(!is.na(Treatment_new)) %>%
filter(Treatment_D == "Vol. Treated")
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp Vol_Treat NR",
modelDescr = "MXL wtp space Vol_Treat NR",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/Split_samples"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
mu_nat_NR = 0,
mu_walking_NR = 0,
mu_asc_NR = 0,
ASC_sq = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 0)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR -
Rent_1)
V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR -
Rent_2)
V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 +
mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR -
Rent_3 + mu_asc_NR * Z_Mean_NR)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_Vol_Treat_NR = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_Vol_Treat_NR)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment