Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HIDDEN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sPlot
HIDDEN
Commits
021f1ed4
Commit
021f1ed4
authored
4 years ago
by
Francesco Sabatini
Browse files
Options
Downloads
Patches
Plain Diff
Aligned Figure numbers - Output for all combinations
parent
6db0af12
No related branches found
No related tags found
No related merge requests found
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
02_Mesobromion_ExamineOutput.R
+194
-12
194 additions, 12 deletions
02_Mesobromion_ExamineOutput.R
03_Figures_Simulations.R
+217
-93
217 additions, 93 deletions
03_Figures_Simulations.R
04_Additional_Figs.R
+51
-37
51 additions, 37 deletions
04_Additional_Figs.R
with
462 additions
and
142 deletions
02_Mesobromion_ExamineOutput.R
+
194
−
12
View file @
021f1ed4
...
...
@@ -348,7 +348,7 @@ mydata.best <- mydata %>%
write_csv
(
mydata.best
%>%
dplyr
::
select
(
Trait.comb
:
sign_plus
),
path
=
"_output/S
5
_BestSolutionTiers.cov.csv"
)
path
=
"_output/S
9
_BestSolutionTiers.cov.csv"
)
### Graph of all the best combinations with text legend
(
top.all
<-
ggplot
(
data
=
(
mydata.best
%>%
...
...
@@ -397,6 +397,188 @@ ggsave(filename = "_pics/Fig5_Best_AllCombinations_CI_cov.png", dpi=400,
width
=
6
,
height
=
2
,
topall.leg
)
###### ________R1___________ ######
###### R1.2. Import output from Cluster ####
##### R1.2.0. Trait labs for significant traits
traits.sign.cov
<-
read_delim
(
file
=
"_data/Mesobromion/traits.v2.10perc.cov.sign.txt"
,
delim
=
"\t"
)
traits.sign.cov
<-
traits.sign.cov
%>%
as.data.frame
()
%>%
mutate_if
(
~
is.character
(
.
),
.funs
=~
as.factor
(
.
))
%>%
column_to_rownames
(
"species0"
)
## adapt trait labs to sign traits only
trait.labs.sign.cov
<-
trait.labs
%>%
filter
(
trait.name
%in%
colnames
(
traits.sign.cov
))
%>%
arrange
(
match
(
trait.name
,
colnames
(
traits.sign.cov
)))
%>%
rename
(
Trait.comb.new
=
Trait.comb
)
%>%
mutate
(
Trait.comb
=
1
:
n
())
%>%
dplyr
::
select
(
Trait.comb
,
everything
(),
-
Trait.comb.new
)
##### R1.2.1 Cover values ######
### sequential trait combo
myfilelist1
<-
list.files
(
path
=
"_derived/Mesobromion/Cover/R1_all/"
,
pattern
=
"HIDDENcov-nona2_[0-9]+_.RData"
,
full.names
=
T
)
dataFiles1
=
purrr
::
map
(
myfilelist1
,
function
(
x
){
get
(
load
(
x
))})
#load("_derived/Mesobromion/PresAbs/HIDDEN_round_11.RData")
corXY.all
=
bind_rows
(
dataFiles1
)
%>%
as_tibble
()
%>%
distinct
()
corXY.all.ci
<-
get.ci
(
corXY.all
)
corXY.all.ci
<-
corXY.all.ci
%>%
mutate
(
Trait.comb2
=
Trait.comb
)
%>%
separate
(
Trait.comb2
,
into
=
paste0
(
"trait"
,
1
:
7
))
%>%
mutate_at
(
.vars
=
vars
(
trait1
:
trait7
),
.funs
=~
factor
(
.
,
levels
=
trait.labs.sign.cov
$
Trait.comb
,
labels
=
trait.labs.sign.cov
$
trait.name
))
%>%
arrange
(
ntraits
,
desc
(
Coef.obs
))
%>%
#filter(ntraits>1) %>%
dplyr
::
select
(
Trait.comb
,
Test
,
n
,
ntraits
,
everything
())
%>%
mutate
(
run
=
"seq"
)
rm
(
dataFiles1
)
#dataFiles0,
### merge together
corXY.ci
<-
corXY.all.ci
# %>%
mydata
<-
corXY.ci
######## R1.2.1.4 Best - Graph of r(XY) using best combination of traits at each level of interaction N ########
### extract best combinations of traits
top.one.by.one
<-
get.best
(
mydata
,
N
=
1
,
labs
=
trait.labs.sign.cov
)
## Routine to extract the best combination at each level of interaction (up to max traits)
maxtraits
<-
7
for
(
nn
in
1
:
maxtraits
){
if
(
nn
==
1
)
{
best.at.1
<-
get.best
(
mydata
,
N
=
nn
,
labs
=
trait.labs.sign.cov
)
newdata
<-
mydata
%>%
filter_at
(
.vars
=
vars
(
trait1
:
trait7
),
.vars_predicate
=
any_vars
(
.
%in%
best.at.1
$
trait.name
|
is.na
(
.
)))
new.best.row
<-
newdata
%>%
filter
(
Trait.comb
==
best.at.1
$
Trait.comb
)
upper
<-
new.best.row
$
q975
lower
<-
new.best.row
$
q025
print
(
paste
(
"new best at nn"
,
nn
,
best.at.1
$
trait.name
))
best.progr
<-
best.at.1
$
Trait.comb
}
if
(
nn
>
1
){
better
<-
list
()
better
$
Trait.comb
<-
newdata
%>%
filter
(
ntraits
==
nn
)
%>%
filter
(
q025
>
upper
)
%>%
arrange
(
desc
(
Coef.obs
))
%>%
slice
(
1
)
%>%
pull
(
Trait.comb
)
if
(
length
(
better
$
Trait.comb
>
0
)){
better
$
trait.name
<-
trait.labs.sign.cov
%>%
filter
(
Trait.comb
%in%
strsplit
(
better
$
Trait.comb
,
split
=
"_"
)[[
1
]])
%>%
pull
(
trait.name
)
newdata
<-
newdata
%>%
rowwise
()
%>%
mutate
(
nmatching
=
sum
(
unlist
(
strsplit
(
Trait.comb
,
"_"
))
%in%
unlist
(
strsplit
(
better
$
Trait.comb
,
"_"
)),
na.rm
=
T
))
%>%
ungroup
()
%>%
filter
(
nmatching
==
nn
)
new.best.row
<-
newdata
%>%
filter
(
Trait.comb
==
better
$
Trait.comb
)
upper
<-
new.best.row
$
q975
lower
<-
new.best.row
$
q025
print
(
paste
(
"new best at nn"
,
nn
,
paste
(
better
$
trait.name
,
collapse
=
" "
)))
best
<-
better
best.progr
<-
c
(
best.progr
,
better
$
Trait.comb
)
}
}
}
best.traits.cov
<-
corXY.ci
%>%
filter
(
as.character
(
Trait.comb
)
==
best.progr
[
length
(
best.progr
)])
%>%
dplyr
::
select
(
trait1
:
trait7
)
%>%
mutate_all
(
~
as.character
(
.
))
%>%
dplyr
::
select
(
colnames
(
.
)[
which
(
colSums
(
is.na
(
.
))
==
0
)])
best.traits.cov
<-
as.character
(
best.traits.cov
[
1
,])
#"Leaf_Scleroph" "FP_Dur" "VP_Fragm" "Height" "SLA"
### Create dataset with best combinations + all the one-way combinations
mydata.best
<-
mydata
%>%
#filter_at(.vars=vars(trait1:trait7),
# # .vars_predicate = all_vars(. %in% best$trait.name | is.na(.))) %>%
# .vars_predicate = all_vars(. %in% traits.sign.alone.cov | is.na(.))) %>%
filter
(
ntraits
>
1
)
%>%
filter
(
sign_plus
==
T
)
%>%
arrange
(
ntraits
,
Coef.obs
)
%>%
group_by
(
ntraits
)
%>%
slice
(
n
())
%>%
ungroup
()
%>%
bind_rows
(
corXY.ci
%>%
filter
(
run
==
"seq"
)
%>%
filter
(
ntraits
==
1
))
%>%
#filter(trait1 %in% traits.sign.alone.cov)) %>%
arrange
(
ntraits
,
Coef.obs
)
%>%
mutate
(
seq
=
1
:
n
())
%>%
mutate
(
sign_plus
=
factor
(
Trait.comb
%in%
best.progr
))
write_csv
(
mydata.best
%>%
dplyr
::
select
(
Trait.comb
:
sign_plus
),
path
=
"_output/R1.S5_BestSolutionTiers.cov_allcombos.csv"
)
### Graph of all the best combinations with text legend
(
top.all
<-
ggplot
(
data
=
(
mydata.best
%>%
mutate
(
size0
=
.6
+
(
as.numeric
(
sign_plus
)
-1
)
*
.6
)))
+
geom_segment
(
aes
(
x
=
q025
,
xend
=
q975
,
y
=
seq
,
yend
=
seq
,
col
=
"a"
,
lwd
=
size0
))
+
geom_point
(
aes
(
x
=
Coef.obs
,
y
=
seq
),
pch
=
15
)
+
scale_y_continuous
(
breaks
=
mydata.best
$
seq
,
labels
=
mydata.best
$
Trait.comb
,
name
=
NULL
)
+
scale_x_continuous
(
name
=
"RD correlation"
)
+
scale_size_identity
()
+
theme_bw
()
+
theme
(
panel.grid.minor
=
element_blank
(),
axis.text
=
element_text
(
size
=
7
),
legend.position
=
"none"
))
# create legend of names
tt2
<-
ttheme_minimal
(
core
=
list
(
fg_params
=
list
(
cex
=
.7
),
padding
=
unit
(
c
(
1
,
1
),
"mm"
)),
colhead
=
list
(
fg_params
=
list
(
cex
=
.7
)),
rowhead
=
list
(
fg_params
=
list
(
cex
=
.7
)))
ttlabs
<-
trait.labs.sign.cov
%>%
mutate
(
Code
=
1
:
n
())
tobold
<-
which
(
ttlabs
$
trait.name
%in%
best.traits.cov
)
tg
<-
tableGrob
(
ttlabs
%>%
dplyr
::
select
(
Code
,
Trait
=
Long_English_name
)
%>%
mutate
(
Trait
=
replace
(
x
=
Trait
,
list
=
Trait
==
"Vegetative Propagation - Fragmentation"
,
values
=
"Veg. Propag. - Fragmentation"
)),
theme
=
tt2
,
rows
=
NULL
)
## Make significant traits bold
for
(
i
in
(
11
+
tobold
))
{
tg
$
grobs
[[
i
]]
<-
editGrob
(
tg
$
grobs
[[
i
]],
gp
=
gpar
(
fontface
=
"bold"
))
}
#arrange into a panel
(
topall.leg
<-
cowplot
::
plot_grid
(
top.all
,
tg
,
nrow
=
1
,
rel_widths
=
c
(
0.60
,
0.4
)))
ggsave
(
filename
=
"_pics/R1/Fig5_R1_Best_AllCombinations_CI_cov.png"
,
dpi
=
400
,
width
=
6
,
height
=
2
,
topall.leg
)
break
()
###### ___________________ ######
...
...
@@ -755,7 +937,7 @@ PCA.fuzz1_3 <- basemap0 +
ylab
(
paste
(
"PC3 ("
,
varexpl
[
3
],
"%)"
,
sep
=
""
))
PC_fuzzy
<-
cowplot
::
plot_grid
(
PCA.fuzz1_2
,
PCA.fuzz1_3
,
nrow
=
1
)
ggsave
(
"_pics/S1
1
_PC_Fuzzy_1-3.png"
,
width
=
10
,
height
=
5
,
dpi
=
300
,
last_plot
())
ggsave
(
"_pics/S1
3
_PC_Fuzzy_1-3.png"
,
width
=
10
,
height
=
5
,
dpi
=
300
,
last_plot
())
#### 4.0.1 Alternative showing species scores ####
tmp
<-
as.data.frame
(
pca.fuzz
$
CA
$
v
[,
1
:
3
]
*
7
)
%>%
...
...
@@ -812,8 +994,8 @@ PCAfuzz1_3.sp <- basemap0 %+% tmp +
ylab
(
paste
(
"PC3 ("
,
varexpl
[
3
],
"%)"
,
sep
=
""
))
ggsave
(
"_pics/S1
1
a_PCA_Fuzzy_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCAfuzz1_2.sp
)
ggsave
(
"_pics/S1
1
b_PCA_Fuzzy_1-3_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCAfuzz1_3.sp
)
ggsave
(
"_pics/S1
3
a_PCA_Fuzzy_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCAfuzz1_2.sp
)
ggsave
(
"_pics/S1
3
b_PCA_Fuzzy_1-3_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCAfuzz1_3.sp
)
...
...
@@ -833,7 +1015,7 @@ env.cor <- cor(env %>%
scores.pca
,
use
=
"pairwise.complete.obs"
)
#double check
fuzz.cor
<-
cor
(
pca.fuzz
$
CA
$
u
[,
1
:
3
],
scores.pca
)
sink
(
"_output/S
9
_EnvFit_CWMs_env.txt"
)
sink
(
"_output/S
14
_EnvFit_CWMs_env.txt"
)
cwms.cor
env.cor
fuzz.cor
...
...
@@ -953,8 +1135,8 @@ PCA3_4.sp <- basemap0 %+% tmp +
ylab
(
paste
(
"PC4 ("
,
varexpl
[
4
],
"%)"
,
sep
=
""
))
ggsave
(
"_pics/S1
0
a_PCA_Beals_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA1_2.sp
)
ggsave
(
"_pics/S1
0
b_PCA_Beals_3-4_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA3_4.sp
)
ggsave
(
"_pics/S1
4
a_PCA_Beals_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA1_2.sp
)
ggsave
(
"_pics/S1
4
b_PCA_Beals_3-4_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA3_4.sp
)
###### _ ######
...
...
@@ -1155,7 +1337,7 @@ PCA.t2 <- baseplot +
PC_traits
<-
cowplot
::
plot_grid
(
PCA.t1
,
PCA.t2
,
nrow
=
1
)
ggsave
(
"_pics/S
6
_PCA_Traits_1-4_only7.png"
,
width
=
10
,
height
=
5
,
dpi
=
300
,
PC_traits
)
ggsave
(
"_pics/S
10c
_PCA_Traits_1-4_only7.png"
,
width
=
10
,
height
=
5
,
dpi
=
300
,
PC_traits
)
##### 4.3b Alternative version of figS6, showing the species ####
tmp
<-
as.data.frame
(
pca.scores
[,
1
:
4
]
*
.2
)
%>%
...
...
@@ -1200,8 +1382,8 @@ PCA.t2.sp <- baseplot %+% tmp +
xlab
(
paste
(
"PC3 ("
,
varexpl
[
3
],
"%)"
,
sep
=
""
))
+
ylab
(
paste
(
"PC4 ("
,
varexpl
[
4
],
"%)"
,
sep
=
""
))
ggsave
(
"_pics/S
6a
_PCA_Traits_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA.t1.sp
)
ggsave
(
"_pics/S
6
b_PCA_Traits_3-4_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA.t2.sp
)
ggsave
(
"_pics/S
10
_PCA_Traits_1-2_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA.t1.sp
)
ggsave
(
"_pics/S
10
b_PCA_Traits_3-4_wSpecies.png"
,
width
=
8
,
height
=
8
,
dpi
=
300
,
PCA.t2.sp
)
#traits.dummy %>% filter(species0 %in% (tmp %>% filter(labels %in% c("Fes_pal", "Ses_alb", "Car_hum")) %>% pull(species))) %>% dplyr::select(any_of(starts_with(as.character(traits.sign.alone.cov))))
...
...
@@ -1304,7 +1486,7 @@ traits7 <- traits %>%
# relocate(all_of(starts_with(as.character(best.traits.cov))), everything())
res
<-
cor
(
traits7
,
use
=
"pairwise.complete.obs"
)
png
(
file
=
"_pics/S
7
_Correlations_Trait.png"
,
width
=
8
,
height
=
6.5
,
units
=
"in"
,
res
=
300
)
png
(
file
=
"_pics/S
11
_Correlations_Trait.png"
,
width
=
8
,
height
=
6.5
,
units
=
"in"
,
res
=
300
)
corrplot
(
res
,
type
=
"upper"
,
tl.col
=
"black"
,
tl.srt
=
45
,
number.cex
=
0.6
,
addCoef.col
=
"black"
,
diag
=
F
)
dev.off
()
...
...
@@ -1315,7 +1497,7 @@ res2 <- cor(CWM.wide %>%
dplyr
::
select
(
any_of
(
traits.sign.alone.cov
))
%>%
## caution selecting only numerical variables
dplyr
::
select
(
sort
(
tidyselect
::
peek_vars
()))
%>%
relocate
(
any_of
(
best.traits.cov
),
everything
()))
png
(
file
=
"_pics/S
8
_Correlations_CWMs.png"
,
width
=
8
,
height
=
6.5
,
units
=
"in"
,
res
=
300
)
png
(
file
=
"_pics/S
12
_Correlations_CWMs.png"
,
width
=
8
,
height
=
6.5
,
units
=
"in"
,
res
=
300
)
corrplot
(
res2
,
type
=
"upper"
,
tl.col
=
"black"
,
tl.srt
=
45
,
number.cex
=
0.6
,
addCoef.col
=
"black"
,
diag
=
F
)
dev.off
()
...
...
This diff is collapsed.
Click to expand it.
03_Figures_Simulations.R
+
217
−
93
View file @
021f1ed4
This diff is collapsed.
Click to expand it.
04_Additional_Figs.R
+
51
−
37
View file @
021f1ed4
...
...
@@ -122,6 +122,7 @@ do.the.parse <- function(toparse) {
}
### Figure R1.S8 - Comparison beta vs cor ####
## Function to create Figure SXXV
create.panel
<-
function
(
x
){
gg.betaW
<-
ggplot
(
data
=
x
%>%
...
...
@@ -132,7 +133,6 @@ create.panel <- function(x){
geom_density
(
aes
(
value
))
+
xlab
(
"Proportional Beta Diversity (W)"
)
+
xlim
(
c
(
0
,
1.1
))
+
ylim
(
c
(
0
,
60
))
+
theme_classic
()
gg.betaY
<-
gg.betaW
%+%
...
...
@@ -149,7 +149,8 @@ create.panel <- function(x){
group_by
(
dataset
,
metric
,
matrix
)
%>%
summarize
(
value
=
max
(
abs
(
value
))))
+
xlab
(
"Cor(WE)"
)
+
ylab
(
NULL
)
ylab
(
NULL
)
+
ylim
(
c
(
0
,
13.5
))
gg.corY
<-
gg.betaW
%+%
(
x
%>%
...
...
@@ -159,56 +160,62 @@ create.panel <- function(x){
group_by
(
dataset
,
metric
,
matrix
)
%>%
summarize
(
value
=
max
(
abs
(
value
))))
+
xlab
(
"Cor(YE)"
)
+
ylab
(
NULL
)
ylab
(
NULL
)
+
ylim
(
c
(
0
,
13.5
))
gg.panel
<-
cowplot
::
plot_grid
(
gg.betaW
,
gg.corW
,
gg.betaY
,
gg.corY
,
nrow
=
2
,
rel_widths
=
c
(
1
,
1.06
))
nrow
=
2
,
rel_widths
=
c
(
1
,
1.06
)
,
align
=
"hv"
)
return
(
gg.panel
)
}
### Figure SXXV - comparison beta vs cor ####
# Set path of files to import and parse
mypath
<-
"_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XY_SampleSize_Main=040_Inter=00_Corr=00_v21169"
myfiles
<-
list.files
(
path
=
mypath
,
pattern
=
"FinalSimulatedData.txt"
,
recursive
=
T
,
full.names
=
T
)
myfiles
<-
myfiles
[
grepl
(
"_new"
,
x
=
myfiles
)]
# Loop over files to import and parse. Create graphs
for
(
i
in
1
:
length
(
myfiles
)){
toparse
<-
myfiles
[
i
]
sampleN
<-
regmatches
(
toparse
,
gregexpr
(
"N=[[:digit:]]+"
,
toparse
))[[
1
]]
div.summary
<-
do.the.parse
(
toparse
)
gg.out
<-
create.panel
(
div.summary
)
ggsave
(
filename
=
paste0
(
"_pics/R1/FigS
XXZ
_Panel_BetaCor_"
,
sampleN
,
".png"
),
ggsave
(
filename
=
paste0
(
"_pics/R1/FigS
8
_Panel_BetaCor_"
,
sampleN
,
".png"
),
width
=
6
,
height
=
5
,
device
=
"png"
,
dpi
=
300
,
plot
=
gg.out
)
}
#### Figure SXXK - Comparison abg across combinatios Inter X Corr (Main=0.3) ####
#### Figure R1.S1d - Comparison abg across combinatios Inter X Corr (Main=0.3) ####
create.panel2
<-
function
(
xx
,
i
,
tit
){
require
(
ggpubr
)
# alpha, min, mean, max
gg.alpha
<-
ggplot
(
data
=
xx
%>%
filter
(
matrix
==
"W"
)
%>%
filter
(
metric
%in%
c
(
"richness"
,
"alpha"
))
%>%
mutate
(
with
=
ifelse
(
!
is.na
(
with
),
paste0
(
"OTU Rich ("
,
with
,
")"
),
with
))
%>%
mutate
(
with
=
ifelse
(
is.na
(
with
),
"Eq. OTU (mean)"
,
with
)))
+
geom_density
(
aes
(
value
,
group
=
with
,
col
=
with
),
alpha
=
0.7
,
show.legend
=
FALSE
)
+
stat_density
(
aes
(
x
=
value
,
colour
=
with
),
geom
=
"line"
,
position
=
"identity"
)
+
scale_color_brewer
(
palette
=
"Dark2"
,
name
=
NULL
)
+
theme_classic
()
+
xlab
(
"Alpha diversity (OTU Richness)"
)
+
theme
(
legend.position
=
c
(
0.65
,
0.9
)
#,
#legend.text = element_text(size=7)
)
+
gg.rich
<-
ggplot
(
data
=
xx
%>%
filter
(
matrix
==
"W"
)
%>%
filter
(
metric
%in%
c
(
"richness"
)))
+
geom_density
(
aes
(
value
,
group
=
with
,
col
=
with
),
alpha
=
0.7
,
show.legend
=
FALSE
)
+
stat_density
(
aes
(
x
=
value
,
colour
=
with
),
geom
=
"line"
,
position
=
"identity"
)
+
scale_color_brewer
(
palette
=
"Dark2"
,
name
=
NULL
)
+
theme_classic
()
+
xlab
(
"Species richness"
)
+
theme
(
legend.position
=
c
(
0.75
,
0.9
))
+
xlim
(
c
(
-.1
,
100
))
+
ylim
(
c
(
0
,
0.25
))
ylim
(
c
(
0
,
0.2
))
# alpha, min, mean, max
gg.alpha
<-
gg.rich
%+%
(
xx
%>%
filter
(
matrix
==
"W"
)
%>%
filter
(
metric
==
"alpha"
))
+
geom_density
(
aes
(
value
),
show.legend
=
FALSE
)
+
xlab
(
"Mean alpha diversity"
)
+
ylim
(
c
(
0
,
0.07
))
+
ylab
(
NULL
)
# beta
gg.beta
<-
ggplot
(
data
=
xx
%>%
...
...
@@ -225,7 +232,7 @@ create.panel2 <- function(xx, i, tit){
(
xx
%>%
filter
(
matrix
==
"W"
)
%>%
filter
(
metric
%in%
"propbeta"
))
+
xlab
(
"Proportional
B
eta Diversity"
)
+
xlab
(
"Proportional
b
eta Diversity"
)
+
xlim
(
c
(
0
,
0.7
))
+
ylim
(
c
(
0
,
4
))
#gamma
...
...
@@ -243,12 +250,14 @@ create.panel2 <- function(xx, i, tit){
))
if
(
i
!=
1
){
gg.
alpha
<-
gg.
alpha
+
gg.
rich
<-
gg.
rich
+
theme
(
legend.position
=
"none"
)
}
}
if
(
i
!=
3
){
gg.rich
<-
gg.rich
+
xlab
(
NULL
)
+
theme
(
axis.text.x
=
element_blank
())
gg.alpha
<-
gg.alpha
+
xlab
(
NULL
)
+
theme
(
axis.text.x
=
element_blank
())
...
...
@@ -263,27 +272,32 @@ create.panel2 <- function(xx, i, tit){
theme
(
axis.text.x
=
element_blank
())
}
gg.panel
<-
cowplot
::
plot_grid
(
gg.title
,
gg.alpha
,
gg.beta
,
gg.propbeta
,
gg.gamma
,
nrow
=
1
,
rel_widths
=
c
(
0.08
,
1
,
.94
,
.94
,
.94
))
gg.panel
<-
cowplot
::
plot_grid
(
gg.title
,
gg.rich
,
gg.alpha
,
gg.beta
,
gg.propbeta
,
gg.gamma
,
nrow
=
1
,
rel_widths
=
c
(
0.08
,
1
,
.94
,
.94
,
.94
,
.94
))
return
(
gg.panel
)
}
## set path of files to import and parse
mypath
<-
"_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XY_DataExamples/"
myfiles
<-
list.files
(
path
=
mypath
,
pattern
=
"FinalSimulatedData.txt"
,
recursive
=
T
,
full.names
=
T
)
#loop of files, parse and create graphs
panel.list
<-
list
()
for
(
i
in
1
:
length
(
myfiles
)){
toparse
<-
myfiles
[
i
]
Inter
<-
regmatches
(
toparse
,
gregexpr
(
"Inter=[[:digit:]]+"
,
toparse
))[[
1
]]
Inter
<-
gsub
(
pattern
=
"=0"
,
replacement
=
" = 0."
,
x
=
Inter
)
Inter
<-
gsub
(
pattern
=
"0.0"
,
replacement
=
"0"
,
x
=
Inter
)
Corr
<-
regmatches
(
toparse
,
gregexpr
(
"Corr=[[:digit:]]+"
,
toparse
))[[
1
]]
Corr
<-
gsub
(
pattern
=
"=0"
,
replacement
=
" = 0."
,
x
=
Corr
)
Corr
<-
gsub
(
pattern
=
"0.0"
,
replacement
=
"0"
,
x
=
Corr
)
div.summary
<-
do.the.parse
(
toparse
)
panel.list
[[
i
]]
<-
create.panel2
(
div.summary
,
i
=
i
,
tit
=
paste
(
Inter
,
Corr
))
}
gg.S
XXK
<-
cowplot
::
plot_grid
(
plotlist
=
panel.list
,
nrow
=
3
)
ggsave
(
filename
=
"_pics/R1/FigS
XXK
_Panel_abg.png"
,
width
=
10
,
height
=
6
,
device
=
"png"
,
dpi
=
300
,
plot
=
gg.S
XXK
)
gg.S
1d
<-
cowplot
::
plot_grid
(
plotlist
=
panel.list
,
nrow
=
3
)
ggsave
(
filename
=
"_pics/R1/FigS
1d
_Panel_abg.png"
,
width
=
10
,
height
=
6
,
device
=
"png"
,
dpi
=
300
,
plot
=
gg.S
1d
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment