Skip to content
Snippets Groups Projects
Commit 32cd730d authored by Francesco Sabatini's avatar Francesco Sabatini
Browse files

Aligned to completed trait matrix data

parent 680c334b
Branches
No related tags found
No related merge requests found
...@@ -12,9 +12,10 @@ source("99_HIDDEN_functions.R") ...@@ -12,9 +12,10 @@ source("99_HIDDEN_functions.R")
##### PART 1 #### ##### PART 1 ####
#### 1. traits data #### #### 1. traits data ####
traits0 <- read_delim("_data/Mesobromion/traits3_cov.txt", delim =";", ## manually corrected vowels with umlaut traits0 <- read_delim("_data/Mesobromion/traits4.csv", delim =",", ## manually corrected vowels with umlaut
col_names = T, locale = locale(encoding = 'UTF-8')) %>% col_names = T, locale = locale(encoding = 'UTF-8')) %>%
column_to_rownames("X1") %>% column_to_rownames("X1") %>%
dplyr::select(-starts_with("X")) %>%
dplyr::select(colnames(.)[which(colSums(., na.rm=T)!=0)]) %>% dplyr::select(colnames(.)[which(colSums(., na.rm=T)!=0)]) %>%
dplyr::select(!starts_with("BLM")) %>% dplyr::select(!starts_with("BLM")) %>%
dplyr::select(!starts_with("ZWT")) %>% dplyr::select(!starts_with("ZWT")) %>%
...@@ -30,15 +31,22 @@ traits0 <- read_delim("_data/Mesobromion/traits3_cov.txt", delim =";", ## manua ...@@ -30,15 +31,22 @@ traits0 <- read_delim("_data/Mesobromion/traits3_cov.txt", delim =";", ## manua
mutate(species=gsub(pattern="_", replacement = " ", x = species)) %>% mutate(species=gsub(pattern="_", replacement = " ", x = species)) %>%
mutate(species=gsub(pattern=" agg | x | spec$| agg$| s | Sec | ", replacement=" ", x=species)) %>% mutate(species=gsub(pattern=" agg | x | spec$| agg$| s | Sec | ", replacement=" ", x=species)) %>%
mutate(species=gsub(pattern=" $", replacement = "", x = species)) %>% mutate(species=gsub(pattern=" $", replacement = "", x = species)) %>%
mutate(species=ifelse(is.na(word(species, 1, 2)), species, word(species, 1, 2))) mutate(species=ifelse(is.na(word(species, 1, 2)), species, word(species, 1, 2))) %>%
dim(traits0) #907 obs. of 75 variables: ungroup()
dim(traits0) #902 obs. of 67 variables:
## remove species with NAs
#keep only traits with >=88 completeness species.to.remove <- traits0 %>%
filter(all_of(is.na({.} %>% dplyr::select(-species, -species0)))) %>%
pull(species0)
traits0 <- traits0 %>% traits0 <- traits0 %>%
dplyr::select_if(~mean(!is.na(.)) >= 0.88) filter(!species0 %in% species.to.remove)
dim(traits0)# 902 x 67
# #keep only traits with >=88 completeness
# traits0 <- traits0 %>%
# dplyr::select_if(~mean(!is.na(.)) >= 0.88)
# dim(traits0)# 902 x 67
...@@ -88,8 +96,8 @@ all.traits <- traits0 %>% ...@@ -88,8 +96,8 @@ all.traits <- traits0 %>%
by="species") by="species")
traits <- all.traits %>% traits <- all.traits %>%
filter(!is.na(LeafArea)) filter(!is.na(LeafArea))
dim(all.traits) #[1] 902 82 dim(all.traits) #[1] 898 82
dim(traits) #[1] 801 82 dim(traits) #[1] 799 82
...@@ -114,22 +122,23 @@ env.all <- env ...@@ -114,22 +122,23 @@ env.all <- env
### 3. Import species data #### ### 3. Import species data ####
# columns in species correspond to those in env # columns in species correspond to those in env
# there is no PlotObservationID (yet) # there is no PlotObservationID (yet)
species0 <- read_csv("_data/Mesobromion/GVRD_Mes2_proz2.csv", locale = locale(encoding = 'latin1')) species0 <- read_csv("_data/Mesobromion/GVRD_Mes2_proz2.csv", locale = locale(encoding = 'latin1')) %>%
dim(species0) #6868 obs. of 903 variables: dplyr::select(-species.to.remove) %>%
rownames(species0) <- env0$RELEVE_NR mutate(RELEVE_NR=env0$RELEVE_NR)
dim(species0) #6868 obs. of 899 variables:
## select only plots already selected in env ## select only plots already selected in env
species <- env %>% species <- env %>%
dplyr::select(RELEVE_NR) %>% dplyr::select(RELEVE_NR) %>%
left_join(species0 %>% left_join(species0,
mutate(RELEVE_NR=env0$RELEVE_NR),
by="RELEVE_NR") %>% by="RELEVE_NR") %>%
column_to_rownames("RELEVE_NR") %>% column_to_rownames("RELEVE_NR") %>%
## delete species not appearing in any plot ## delete species not appearing in any plot
dplyr::select(colnames(.)[which(colSums(.)!=0)]) dplyr::select(colnames(.)[which(colSums(.)!=0)])
#dplyr::select(traits$species0) #dplyr::select(traits$species0)
dim(species) # [1] 5810 877 dim(species) # [1] 5810 873
releve08trait <- species %>% releve08trait <- species %>%
rownames_to_column("RELEVE_NR") %>% rownames_to_column("RELEVE_NR") %>%
...@@ -310,7 +319,6 @@ species.cov <- species.cov %>% ...@@ -310,7 +319,6 @@ species.cov <- species.cov %>%
dplyr::select(-sumVar) dplyr::select(-sumVar)
dim(species.cov) #[1] 581 510 dim(species.cov) #[1] 581 510
## export ## export
write_delim(species.pa, path="_data/Mesobromion/species.v2.10perc.pa.txt", delim="\t") write_delim(species.pa, path="_data/Mesobromion/species.v2.10perc.pa.txt", delim="\t")
write_delim(species.cov, path="_data/Mesobromion/species.v2.10perc.cov.txt", delim="\t") write_delim(species.cov, path="_data/Mesobromion/species.v2.10perc.cov.txt", delim="\t")
...@@ -323,18 +331,16 @@ write_delim(species %>% ...@@ -323,18 +331,16 @@ write_delim(species %>%
path="_data/Mesobromion/ReleveList.txt", delim="\t") path="_data/Mesobromion/ReleveList.txt", delim="\t")
##check for species without trait info ##check for species without trait info
traits %>% traits %>%
filter_at(.vars=vars(-"species0"), filter_at(.vars=vars(-"species0"),
all_vars(is.na(.))) %>% all_vars(is.na(.))) %>%
nrow() ## [1] no species with no trait info ## nrow() ## [1] no species with no trait info ##
## simply because those 7 species without TRY data were excluded already
traits %>% traits %>%
filter_at(.vars=vars(-"species0"), filter_at(.vars=vars(-"species0"),
any_vars(is.na(.))) %>% any_vars(is.na(.))) %>%
nrow() ## [1] 109 # species with at least 1 NA in traits nrow() ## [1] 36 # species with at least 1 NA in traits
#### CORRELATION BETWEEN FUZZY WEIGHTED AND BEALS MATRICES #### CORRELATION BETWEEN FUZZY WEIGHTED AND BEALS MATRICES
...@@ -350,7 +356,7 @@ traits %>% ...@@ -350,7 +356,7 @@ traits %>%
source("01b_MesobromionCluster.R") source("01b_MesobromionCluster.R")
#### 1. Traits individually significant for COVER data#### na.exclude=T ######## #### 1. Traits individually significant for COVER data#### na.exclude=T ########
traits <- read_delim("_data/Mesobromion/traits.v2.10perc.txt", delim="\t") traits <- read_delim("_data/Mesobromion/traits.v2.10perc.txt", delim="\t")
myfilelist <- list.files(path="_derived/Mesobromion/Cover", pattern="HIDDENcov_[0-9]+_.RData", full.names = T) myfilelist <- list.files(path="_derived/Mesobromion/Cover", pattern="HIDDENcov-nona2_[0-9]+_.RData", full.names = T)
dataFiles = purrr::map(myfilelist, function(x){get(load(x))}) dataFiles = purrr::map(myfilelist, function(x){get(load(x))})
corXY = bind_rows(dataFiles) %>% corXY = bind_rows(dataFiles) %>%
as_tibble() as_tibble()
...@@ -373,7 +379,7 @@ traits.sign <- traits %>% ...@@ -373,7 +379,7 @@ traits.sign <- traits %>%
dplyr::select(species0, any_of(traits.sign.alone)) dplyr::select(species0, any_of(traits.sign.alone))
#write_delim(traits.sign, path="_data/Mesobromion/traits.out.10perc.cov.sign.txt", delim="\t") #write_delim(traits.sign, path="_data/Mesobromion/traits.out.10perc.cov.sign.txt", delim="\t")
### COV - NONAs ### COV - NONAs - all species with at least 1 NAs in traits excluded BEFORE The analysis
" Trait.comb Coef.obs Coef.perm q025 q975 greater.than.perm n sign_plus sign_minus ntraits trait.name " Trait.comb Coef.obs Coef.perm q025 q975 greater.than.perm n sign_plus sign_minus ntraits trait.name
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <lgl> <lgl> <int> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <lgl> <lgl> <int> <fct>
1 36 0.316 0.154 0.290 0.370 0.997 999 TRUE FALSE 1 PlantHeight 1 36 0.316 0.154 0.290 0.370 0.997 999 TRUE FALSE 1 PlantHeight
...@@ -385,6 +391,18 @@ traits.sign <- traits %>% ...@@ -385,6 +391,18 @@ traits.sign <- traits %>%
7 32 0.251 0.127 0.226 0.303 0.968 999 TRUE FALSE 1 SLA 7 32 0.251 0.127 0.226 0.303 0.968 999 TRUE FALSE 1 SLA
8 35 0.241 0.128 0.217 0.289 0.970 999 TRUE FALSE 1 LeafP " 8 35 0.241 0.128 0.217 0.289 0.970 999 TRUE FALSE 1 LeafP "
### COV - NONA2 - modified Matrix.x to deal with NAs INSIDE the analysis
" Trait.comb Coef.obs Coef.perm q025 q975 greater.than.perm n sign_plus sign_minus ntraits trait.name
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <lgl> <lgl> <int> <fct>
1 36 0.304 0.134 0.281 0.356 0.990 199 TRUE FALSE 1 PlantHeight
2 50 0.290 0.126 0.261 0.339 0.985 199 TRUE FALSE 1 BL_ANAT
3 2 0.252 0.0621 0.214 0.303 0.985 199 TRUE FALSE 1 LEB_F_Nanophaneroph…
4 20 0.251 0.145 0.206 0.320 0.975 199 TRUE FALSE 1 V_VER_Fragmentation
5 30 0.250 0.137 0.228 0.298 0.970 199 TRUE FALSE 1 BL_DAU
6 32 0.247 0.0932 0.225 0.292 0.965 199 TRUE FALSE 1 SLA
7 49 0.236 0.0784 0.212 0.284 0.975 199 TRUE FALSE 1 STRAT_T
8 35 0.241 0.127 0.218 0.288 0.940 199 FALSE FALSE 1 LeafP "
### COV - without deleting NAs ### COV - without deleting NAs
"# A tibble: 53 x 11 "# A tibble: 53 x 11
Trait.comb Coef.obs Coef.perm q025 q975 greater.than.perm n sign_plus sign_minus ntraits trait.name Trait.comb Coef.obs Coef.perm q025 q975 greater.than.perm n sign_plus sign_minus ntraits trait.name
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment